Використання підходів активного навчання під час побудови моделей машинного навчання
Анотація
Ключові слова
Повний текст:
PDFПосилання
Settles B. Active learning literature survey. Technical Report // University of Wisconsin-Madison Department of Computer Sciences, 2009.
Lucas G. Batista, Classification of skin lesion through active learning strategies / Lucas Batista, Pedro H. Bugatti, Priscila T.M. Saito// Computer Methods and Programs in Biomedicine, Volume 226, 2022.
Xueying Shi, An active learning approach for reducing annotation cost in skin lesion analysis / Xueying Shi, Qi Dou, Cheng Xue, Jing Qin, Hao Chen, Pheng-Ann Heng, 2019, arXiv: 1909.02344.
André LS Meirelles, Effective active learning in digital pathology: A case study in tumor infiltrating lymphocytes / André LS Meirelles, Tahsin Kurc, Joel Saltz, George Teodoro // Computer Methods and Programs in Biomedicine, Volume 220, 2022.
Sener O. Active learning for convolutional neural networks: a core-set approach / O. Sener, S. Savarese // International Conference on Learning Representations (ICLR), 2018.
Wang Liansheng, Dual multiscale mean teacher network for semi-supervised infection segmentation in chest / Wang Liansheng, Wang Jiacheng, Zhu Lei, Fu Huazhu, Li Ping, Cheng Gary, Feng Zhipeng, Li Shuo, Heng Pheng-Ann // CT Volume for COVID-19. IEEE Transactions on Cybernetics, 2022, p. 1-13.
Atzeni Alessia, Deep active learning for suggestive segmentation of biomedical image stacks via optimisation of Dice scores and traced boundary length / Atzeni Alessia, Peter Loic, Robinson Eleanor, Blackburn Emily, Althonayan Juri, Alexander Daniel, Iglesias Juan // Medical Image Analysis. 81, 2022.
Mohammad Reza Mohebbian, Semi-supervised active transfer learning for fetal ECG arrhythmia detection / Mohammad Reza Mohebbian, Hamid Reza Marateb, Khan A. Wahid // Computer Methods and Programs in Biomedicine Update, Volume 3, 2022.
Wei Huang, Deep active learning with weighting filter for object detection / Wei Huang, Shuzhou Sun, Xiao Lin, Dawei Zhang, Lizhuang Ma // Displays, Volume 76, 2022.
Qingchen Kong, A recurrent network based on active learning for the assessment of fish feeding status / Qingchen Kong, Rongxiang Du, Qingling Duan, Yuquan Zhang, Yingyi Chen, Daoliang Li, Chen Xu, Wensheng Li, Chunhong Liu // Computers and Electronics in Agriculture, Volume 198, 2022.
Wang Qingzhong, A Simple yet Effective Framework for Active Learning to Rank / Wang Qingzhong, Haifang Li, Haoyi Xiong, Wen Wang, Jiang Bian, Yu-Lian Lu, Shuaiqiang Wang, Zhicong Cheng, Dejing Dou and Dawei Yin, 2022, arXiv: arXiv:2205.10137.
Rik van Leeuwen, Anomaly detection in univariate time series incorporating active learning / Rik van Leeuwen, Ger Koole // Journal of Computational Mathematics and Data Science, Volume 6, 2019.
Li Chang, Online Learning to Rank with List-level Feedback for Image Filtering / Li Chang, Grotov Artem, Markov Ilya, Eikema Bryan, Rijke Maarten, 2019, arXiv: arXiv:1812.04910.
Rafael S. Bressan, Optimum-path Forest and active learning approaches for content-based medical image retrieval / Rafael S. Bressan, Pedro H. Bugatti, Priscila T.M. Saito // Optimum-Path Forest, Academic Press, 2022, p. 95-107.
Shen Yeji, TBAL: Two-stage batch-mode active learning for image classification / Shen Yeji, Song Yuhang, Wu Chi-hao, Kuo C.-C. Jay // Signal Processing: Image Communication, 2022.
Coleman Cody, Similarity Search for Efficient Active Learning and Search of Rare Concepts / Coleman Cody, Chou Edward, Culatana Sean, Bailis Peter, Berg Alexander, Sumbaly Roshan, Zaharia Matei, Yalniz I. // The Thirty-Sixth AAAI Conference on Artificial Intelligence, 2020, arXiv:2007.00077.
Посилання
- Поки немає зовнішніх посилань.
Контактна інформація:
Байбуз Олег Григорович - відповідальний редактор
Тел: (056) 766-49-52
Mail: olegbaybuz68@gmail.com
Україна, 49010, м. Дніпро, пр. Гагаріна, 72
--------------------------------------------------------------------
Дніпровський національний університет імені Олеся Гончара
National Library of Ukraine Vernadsky
Bielefeld Academic Search Engine
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.